3.137 \(\int \frac{c+d x^2+e x^4+f x^6}{(a+b x^2)^3} \, dx\)

Optimal. Leaf size=147 \[ \frac{x \left (-5 a^2 b e+9 a^3 f+a b^2 d+3 b^3 c\right )}{8 a^2 b^3 \left (a+b x^2\right )}+\frac{x \left (c-\frac{a \left (a^2 f-a b e+b^2 d\right )}{b^3}\right )}{4 a \left (a+b x^2\right )^2}+\frac{\tan ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{a}}\right ) \left (3 a^2 b e-15 a^3 f+a b^2 d+3 b^3 c\right )}{8 a^{5/2} b^{7/2}}+\frac{f x}{b^3} \]

[Out]

(f*x)/b^3 + ((c - (a*(b^2*d - a*b*e + a^2*f))/b^3)*x)/(4*a*(a + b*x^2)^2) + ((3*b^3*c + a*b^2*d - 5*a^2*b*e +
9*a^3*f)*x)/(8*a^2*b^3*(a + b*x^2)) + ((3*b^3*c + a*b^2*d + 3*a^2*b*e - 15*a^3*f)*ArcTan[(Sqrt[b]*x)/Sqrt[a]])
/(8*a^(5/2)*b^(7/2))

________________________________________________________________________________________

Rubi [A]  time = 0.150206, antiderivative size = 147, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.148, Rules used = {1814, 1157, 388, 205} \[ \frac{x \left (-5 a^2 b e+9 a^3 f+a b^2 d+3 b^3 c\right )}{8 a^2 b^3 \left (a+b x^2\right )}+\frac{x \left (c-\frac{a \left (a^2 f-a b e+b^2 d\right )}{b^3}\right )}{4 a \left (a+b x^2\right )^2}+\frac{\tan ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{a}}\right ) \left (3 a^2 b e-15 a^3 f+a b^2 d+3 b^3 c\right )}{8 a^{5/2} b^{7/2}}+\frac{f x}{b^3} \]

Antiderivative was successfully verified.

[In]

Int[(c + d*x^2 + e*x^4 + f*x^6)/(a + b*x^2)^3,x]

[Out]

(f*x)/b^3 + ((c - (a*(b^2*d - a*b*e + a^2*f))/b^3)*x)/(4*a*(a + b*x^2)^2) + ((3*b^3*c + a*b^2*d - 5*a^2*b*e +
9*a^3*f)*x)/(8*a^2*b^3*(a + b*x^2)) + ((3*b^3*c + a*b^2*d + 3*a^2*b*e - 15*a^3*f)*ArcTan[(Sqrt[b]*x)/Sqrt[a]])
/(8*a^(5/2)*b^(7/2))

Rule 1814

Int[(Pq_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{Q = PolynomialQuotient[Pq, a + b*x^2, x], f = Coeff[P
olynomialRemainder[Pq, a + b*x^2, x], x, 0], g = Coeff[PolynomialRemainder[Pq, a + b*x^2, x], x, 1]}, Simp[((a
*g - b*f*x)*(a + b*x^2)^(p + 1))/(2*a*b*(p + 1)), x] + Dist[1/(2*a*(p + 1)), Int[(a + b*x^2)^(p + 1)*ExpandToS
um[2*a*(p + 1)*Q + f*(2*p + 3), x], x], x]] /; FreeQ[{a, b}, x] && PolyQ[Pq, x] && LtQ[p, -1]

Rule 1157

Int[((d_) + (e_.)*(x_)^2)^(q_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> With[{Qx = PolynomialQ
uotient[(a + b*x^2 + c*x^4)^p, d + e*x^2, x], R = Coeff[PolynomialRemainder[(a + b*x^2 + c*x^4)^p, d + e*x^2,
x], x, 0]}, -Simp[(R*x*(d + e*x^2)^(q + 1))/(2*d*(q + 1)), x] + Dist[1/(2*d*(q + 1)), Int[(d + e*x^2)^(q + 1)*
ExpandToSum[2*d*(q + 1)*Qx + R*(2*q + 3), x], x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && N
eQ[c*d^2 - b*d*e + a*e^2, 0] && IGtQ[p, 0] && LtQ[q, -1]

Rule 388

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[(d*x*(a + b*x^n)^(p + 1))/(b*(n*
(p + 1) + 1)), x] - Dist[(a*d - b*c*(n*(p + 1) + 1))/(b*(n*(p + 1) + 1)), Int[(a + b*x^n)^p, x], x] /; FreeQ[{
a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && NeQ[n*(p + 1) + 1, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{c+d x^2+e x^4+f x^6}{\left (a+b x^2\right )^3} \, dx &=\frac{\left (c-\frac{a \left (b^2 d-a b e+a^2 f\right )}{b^3}\right ) x}{4 a \left (a+b x^2\right )^2}-\frac{\int \frac{-\frac{3 b^3 c+a b^2 d-a^2 b e+a^3 f}{b^3}-\frac{4 a (b e-a f) x^2}{b^2}-\frac{4 a f x^4}{b}}{\left (a+b x^2\right )^2} \, dx}{4 a}\\ &=\frac{\left (c-\frac{a \left (b^2 d-a b e+a^2 f\right )}{b^3}\right ) x}{4 a \left (a+b x^2\right )^2}+\frac{\left (3 b^3 c+a b^2 d-5 a^2 b e+9 a^3 f\right ) x}{8 a^2 b^3 \left (a+b x^2\right )}+\frac{\int \frac{\frac{3 b^3 c+a b^2 d+3 a^2 b e-7 a^3 f}{b^3}+\frac{8 a^2 f x^2}{b^2}}{a+b x^2} \, dx}{8 a^2}\\ &=\frac{f x}{b^3}+\frac{\left (c-\frac{a \left (b^2 d-a b e+a^2 f\right )}{b^3}\right ) x}{4 a \left (a+b x^2\right )^2}+\frac{\left (3 b^3 c+a b^2 d-5 a^2 b e+9 a^3 f\right ) x}{8 a^2 b^3 \left (a+b x^2\right )}+\frac{\left (3 b^3 c+a b^2 d+3 a^2 b e-15 a^3 f\right ) \int \frac{1}{a+b x^2} \, dx}{8 a^2 b^3}\\ &=\frac{f x}{b^3}+\frac{\left (c-\frac{a \left (b^2 d-a b e+a^2 f\right )}{b^3}\right ) x}{4 a \left (a+b x^2\right )^2}+\frac{\left (3 b^3 c+a b^2 d-5 a^2 b e+9 a^3 f\right ) x}{8 a^2 b^3 \left (a+b x^2\right )}+\frac{\left (3 b^3 c+a b^2 d+3 a^2 b e-15 a^3 f\right ) \tan ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{a}}\right )}{8 a^{5/2} b^{7/2}}\\ \end{align*}

Mathematica [A]  time = 0.114484, size = 141, normalized size = 0.96 \[ \frac{x \left (-a^2 b^2 \left (d+5 e x^2-8 f x^4\right )+a^3 b \left (25 f x^2-3 e\right )+15 a^4 f+a b^3 \left (5 c+d x^2\right )+3 b^4 c x^2\right )}{8 a^2 b^3 \left (a+b x^2\right )^2}+\frac{\tan ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{a}}\right ) \left (3 a^2 b e-15 a^3 f+a b^2 d+3 b^3 c\right )}{8 a^{5/2} b^{7/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(c + d*x^2 + e*x^4 + f*x^6)/(a + b*x^2)^3,x]

[Out]

(x*(15*a^4*f + 3*b^4*c*x^2 + a*b^3*(5*c + d*x^2) + a^3*b*(-3*e + 25*f*x^2) - a^2*b^2*(d + 5*e*x^2 - 8*f*x^4)))
/(8*a^2*b^3*(a + b*x^2)^2) + ((3*b^3*c + a*b^2*d + 3*a^2*b*e - 15*a^3*f)*ArcTan[(Sqrt[b]*x)/Sqrt[a]])/(8*a^(5/
2)*b^(7/2))

________________________________________________________________________________________

Maple [A]  time = 0.01, size = 234, normalized size = 1.6 \begin{align*}{\frac{fx}{{b}^{3}}}+{\frac{9\,a{x}^{3}f}{8\,{b}^{2} \left ( b{x}^{2}+a \right ) ^{2}}}-{\frac{5\,{x}^{3}e}{8\,b \left ( b{x}^{2}+a \right ) ^{2}}}+{\frac{{x}^{3}d}{8\, \left ( b{x}^{2}+a \right ) ^{2}a}}+{\frac{3\,b{x}^{3}c}{8\, \left ( b{x}^{2}+a \right ) ^{2}{a}^{2}}}+{\frac{7\,{a}^{2}fx}{8\,{b}^{3} \left ( b{x}^{2}+a \right ) ^{2}}}-{\frac{3\,aex}{8\,{b}^{2} \left ( b{x}^{2}+a \right ) ^{2}}}-{\frac{dx}{8\,b \left ( b{x}^{2}+a \right ) ^{2}}}+{\frac{5\,cx}{8\, \left ( b{x}^{2}+a \right ) ^{2}a}}-{\frac{15\,af}{8\,{b}^{3}}\arctan \left ({bx{\frac{1}{\sqrt{ab}}}} \right ){\frac{1}{\sqrt{ab}}}}+{\frac{3\,e}{8\,{b}^{2}}\arctan \left ({bx{\frac{1}{\sqrt{ab}}}} \right ){\frac{1}{\sqrt{ab}}}}+{\frac{d}{8\,ab}\arctan \left ({bx{\frac{1}{\sqrt{ab}}}} \right ){\frac{1}{\sqrt{ab}}}}+{\frac{3\,c}{8\,{a}^{2}}\arctan \left ({bx{\frac{1}{\sqrt{ab}}}} \right ){\frac{1}{\sqrt{ab}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((f*x^6+e*x^4+d*x^2+c)/(b*x^2+a)^3,x)

[Out]

f*x/b^3+9/8/b^2/(b*x^2+a)^2*x^3*a*f-5/8/b/(b*x^2+a)^2*x^3*e+1/8/(b*x^2+a)^2/a*x^3*d+3/8*b/(b*x^2+a)^2/a^2*x^3*
c+7/8/b^3/(b*x^2+a)^2*a^2*f*x-3/8/b^2/(b*x^2+a)^2*a*e*x-1/8/b/(b*x^2+a)^2*d*x+5/8/(b*x^2+a)^2*x/a*c-15/8/b^3*a
/(a*b)^(1/2)*arctan(b*x/(a*b)^(1/2))*f+3/8/b^2/(a*b)^(1/2)*arctan(b*x/(a*b)^(1/2))*e+1/8/b/a/(a*b)^(1/2)*arcta
n(b*x/(a*b)^(1/2))*d+3/8/a^2/(a*b)^(1/2)*arctan(b*x/(a*b)^(1/2))*c

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x^6+e*x^4+d*x^2+c)/(b*x^2+a)^3,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.50816, size = 1062, normalized size = 7.22 \begin{align*} \left [\frac{16 \, a^{3} b^{3} f x^{5} + 2 \,{\left (3 \, a b^{5} c + a^{2} b^{4} d - 5 \, a^{3} b^{3} e + 25 \, a^{4} b^{2} f\right )} x^{3} +{\left (3 \, a^{2} b^{3} c + a^{3} b^{2} d + 3 \, a^{4} b e - 15 \, a^{5} f +{\left (3 \, b^{5} c + a b^{4} d + 3 \, a^{2} b^{3} e - 15 \, a^{3} b^{2} f\right )} x^{4} + 2 \,{\left (3 \, a b^{4} c + a^{2} b^{3} d + 3 \, a^{3} b^{2} e - 15 \, a^{4} b f\right )} x^{2}\right )} \sqrt{-a b} \log \left (\frac{b x^{2} + 2 \, \sqrt{-a b} x - a}{b x^{2} + a}\right ) + 2 \,{\left (5 \, a^{2} b^{4} c - a^{3} b^{3} d - 3 \, a^{4} b^{2} e + 15 \, a^{5} b f\right )} x}{16 \,{\left (a^{3} b^{6} x^{4} + 2 \, a^{4} b^{5} x^{2} + a^{5} b^{4}\right )}}, \frac{8 \, a^{3} b^{3} f x^{5} +{\left (3 \, a b^{5} c + a^{2} b^{4} d - 5 \, a^{3} b^{3} e + 25 \, a^{4} b^{2} f\right )} x^{3} +{\left (3 \, a^{2} b^{3} c + a^{3} b^{2} d + 3 \, a^{4} b e - 15 \, a^{5} f +{\left (3 \, b^{5} c + a b^{4} d + 3 \, a^{2} b^{3} e - 15 \, a^{3} b^{2} f\right )} x^{4} + 2 \,{\left (3 \, a b^{4} c + a^{2} b^{3} d + 3 \, a^{3} b^{2} e - 15 \, a^{4} b f\right )} x^{2}\right )} \sqrt{a b} \arctan \left (\frac{\sqrt{a b} x}{a}\right ) +{\left (5 \, a^{2} b^{4} c - a^{3} b^{3} d - 3 \, a^{4} b^{2} e + 15 \, a^{5} b f\right )} x}{8 \,{\left (a^{3} b^{6} x^{4} + 2 \, a^{4} b^{5} x^{2} + a^{5} b^{4}\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x^6+e*x^4+d*x^2+c)/(b*x^2+a)^3,x, algorithm="fricas")

[Out]

[1/16*(16*a^3*b^3*f*x^5 + 2*(3*a*b^5*c + a^2*b^4*d - 5*a^3*b^3*e + 25*a^4*b^2*f)*x^3 + (3*a^2*b^3*c + a^3*b^2*
d + 3*a^4*b*e - 15*a^5*f + (3*b^5*c + a*b^4*d + 3*a^2*b^3*e - 15*a^3*b^2*f)*x^4 + 2*(3*a*b^4*c + a^2*b^3*d + 3
*a^3*b^2*e - 15*a^4*b*f)*x^2)*sqrt(-a*b)*log((b*x^2 + 2*sqrt(-a*b)*x - a)/(b*x^2 + a)) + 2*(5*a^2*b^4*c - a^3*
b^3*d - 3*a^4*b^2*e + 15*a^5*b*f)*x)/(a^3*b^6*x^4 + 2*a^4*b^5*x^2 + a^5*b^4), 1/8*(8*a^3*b^3*f*x^5 + (3*a*b^5*
c + a^2*b^4*d - 5*a^3*b^3*e + 25*a^4*b^2*f)*x^3 + (3*a^2*b^3*c + a^3*b^2*d + 3*a^4*b*e - 15*a^5*f + (3*b^5*c +
 a*b^4*d + 3*a^2*b^3*e - 15*a^3*b^2*f)*x^4 + 2*(3*a*b^4*c + a^2*b^3*d + 3*a^3*b^2*e - 15*a^4*b*f)*x^2)*sqrt(a*
b)*arctan(sqrt(a*b)*x/a) + (5*a^2*b^4*c - a^3*b^3*d - 3*a^4*b^2*e + 15*a^5*b*f)*x)/(a^3*b^6*x^4 + 2*a^4*b^5*x^
2 + a^5*b^4)]

________________________________________________________________________________________

Sympy [A]  time = 8.28425, size = 243, normalized size = 1.65 \begin{align*} \frac{\sqrt{- \frac{1}{a^{5} b^{7}}} \left (15 a^{3} f - 3 a^{2} b e - a b^{2} d - 3 b^{3} c\right ) \log{\left (- a^{3} b^{3} \sqrt{- \frac{1}{a^{5} b^{7}}} + x \right )}}{16} - \frac{\sqrt{- \frac{1}{a^{5} b^{7}}} \left (15 a^{3} f - 3 a^{2} b e - a b^{2} d - 3 b^{3} c\right ) \log{\left (a^{3} b^{3} \sqrt{- \frac{1}{a^{5} b^{7}}} + x \right )}}{16} + \frac{x^{3} \left (9 a^{3} b f - 5 a^{2} b^{2} e + a b^{3} d + 3 b^{4} c\right ) + x \left (7 a^{4} f - 3 a^{3} b e - a^{2} b^{2} d + 5 a b^{3} c\right )}{8 a^{4} b^{3} + 16 a^{3} b^{4} x^{2} + 8 a^{2} b^{5} x^{4}} + \frac{f x}{b^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x**6+e*x**4+d*x**2+c)/(b*x**2+a)**3,x)

[Out]

sqrt(-1/(a**5*b**7))*(15*a**3*f - 3*a**2*b*e - a*b**2*d - 3*b**3*c)*log(-a**3*b**3*sqrt(-1/(a**5*b**7)) + x)/1
6 - sqrt(-1/(a**5*b**7))*(15*a**3*f - 3*a**2*b*e - a*b**2*d - 3*b**3*c)*log(a**3*b**3*sqrt(-1/(a**5*b**7)) + x
)/16 + (x**3*(9*a**3*b*f - 5*a**2*b**2*e + a*b**3*d + 3*b**4*c) + x*(7*a**4*f - 3*a**3*b*e - a**2*b**2*d + 5*a
*b**3*c))/(8*a**4*b**3 + 16*a**3*b**4*x**2 + 8*a**2*b**5*x**4) + f*x/b**3

________________________________________________________________________________________

Giac [A]  time = 1.16689, size = 201, normalized size = 1.37 \begin{align*} \frac{f x}{b^{3}} + \frac{{\left (3 \, b^{3} c + a b^{2} d - 15 \, a^{3} f + 3 \, a^{2} b e\right )} \arctan \left (\frac{b x}{\sqrt{a b}}\right )}{8 \, \sqrt{a b} a^{2} b^{3}} + \frac{3 \, b^{4} c x^{3} + a b^{3} d x^{3} + 9 \, a^{3} b f x^{3} - 5 \, a^{2} b^{2} x^{3} e + 5 \, a b^{3} c x - a^{2} b^{2} d x + 7 \, a^{4} f x - 3 \, a^{3} b x e}{8 \,{\left (b x^{2} + a\right )}^{2} a^{2} b^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x^6+e*x^4+d*x^2+c)/(b*x^2+a)^3,x, algorithm="giac")

[Out]

f*x/b^3 + 1/8*(3*b^3*c + a*b^2*d - 15*a^3*f + 3*a^2*b*e)*arctan(b*x/sqrt(a*b))/(sqrt(a*b)*a^2*b^3) + 1/8*(3*b^
4*c*x^3 + a*b^3*d*x^3 + 9*a^3*b*f*x^3 - 5*a^2*b^2*x^3*e + 5*a*b^3*c*x - a^2*b^2*d*x + 7*a^4*f*x - 3*a^3*b*x*e)
/((b*x^2 + a)^2*a^2*b^3)